Connected (g, f)-factors and supereulerian digraphs

نویسنده

  • Gregory Gutin
چکیده

Given a digraph (an undirected graph, resp.) D and two positive integers f (x); g(x) for every x 2 V (D), a subgraph H of D is called a (g; f)-factor if g(x) d + H (x) = d ? H (x) f (x)(g(x) d H (x) f (x), resp.) for every x 2 V (D). If f (x) = g(x) = 1 for every x, then a connected (g; f)-factor is a hamiltonian cycle. The previous research related to the topic has been carried out either for (g; f)-factors (in general, disconnected) or for hamiltonian cycles separately, even though numerous similarities between them have been recently detected. Here we consider connected (g; f)-factors in digraphs and show that several results on hamiltonian digraphs, which are generalizations of tournaments, can be extended to connected (g; f)-factors. Applications of these results to supereulerian digraphs are also obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

Sufficient Conditions for a Digraph to be Supereulerian

A (di)graph is supereulerian if it contains a spanning, connected, eulerian sub(di)graph. This property is a relaxation of hamiltonicity. Inspired by this analogy with hamiltonian cycles and by similar results in supereulerian graph theory, we give a number of sufficient Ore type conditions for a digraph to be supereulerian. Furthermore, we study the following conjecture due to Thomassé and the...

متن کامل

Supereulerian digraphs

A digraph D is supereulerian if D has a spanning directed eulerian subdigraph. We give a necessary condition for a digraph to be supereulerian first and then characterize the digraphDwhich are not supereulerian under the condition that δ(D)+δ(D) ≥ |V (D)|−4. © 2014 Elsevier B.V. All rights reserved.

متن کامل

Spanning subgraph with Eulerian components

A graph is k-supereulerian if it has a spanning even subgraph with at most k components. We show that if G is a connected graph and G is the (collapsible) reduction of G, then G is k-supereulerian if and only if G is k-supereulerian. This extends Catlin’s reduction theorem in [P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29–44]. For a graph G, l...

متن کامل

Ore-type degree condition of supereulerian digraphs

A digraph D is supereulerian if D has a spanning directed eulerian subdigraph. Hong et al. proved that δ(D) + δ(D) ≥ |V (D)| − 4 implies D is supereulerian except some well-characterized digraph classes if the minimum degree is large enough. In this paper, we characterize the digraphs D which are not supereulerian under the condition d+D (u) + d−D (v) ≥ |V (D)| − 4 for any pair of vertices u an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 54  شماره 

صفحات  -

تاریخ انتشار 1999